A Test Case Recommendation Method Based on Morphological Analysis, Clustering and the Mahalanobis-Taguchi Method

Hirohisa Aman1)
Takashi Nakano2)
Hideto Ogasawara2)
Minoru Kawahara1)

1) Ehime University, Japan
2) Toshiba Corporation, Japan
Overview

Purpose
To **recommend similar but different** test cases in order to reduce the risk of **overlooking regressions**

Method
Quantify the **similarity** between test cases through the **morphological analysis**, and categorized them (**clustering**)
Once a **test case is selected by a test engineer**, the proposed method **automatically recommends additional test cases** based on the results of clustering

Result
The proposed method is about **six times more effective** than the random test case selection; it would be useful in making a regression test plan
Outline

- Background, Motivation & Situation
- Test Case Recommendation
 - Morphological Analysis
 - Test Case Clustering
 - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work
Outline

- **Background, Motivation & Situation**
- **Test Case Recommendation**
 - Morphological Analysis
 - Test Case Clustering
 - Test Case Prioritization
- **Empirical Study**
- **Related Work**
- **Conclusion & Future Work**
Background: Regression Testing

- In fact, it is **difficult** to **always make a one-shot release** of a **perfect product** which has no need to be modified in the future.

- Program modifications may cause **other failures** (regressions).
Motivation: Unexpected Failures & Testing Cost

- We may encounter unexpected failures in unexpected functions after modifications.

Unexpected failure in another function which seemed to be independent of the modified functions!

- While it is ideal to rerun all test cases every time, we have the restriction of cost...
Motivation: Risk of Overlooking regressions

- We have **a lot of test cases**, and it's **unrealistic** to rerun **all** of them **whenever** a modification is made.
- We have to **select test cases**, but there is the **risk of overlooking** regressions since we might miss rerunning important test cases.
Motivation: Automated Recommendation in Use

- When you look at a book on Amazon.com

Can we recommend appropriate test cases in an automated way?
Our Available Data

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td></td>
<td>F</td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td></td>
<td>P</td>
<td>F</td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td></td>
<td>F</td>
<td>F</td>
<td></td>
<td>F</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(P: pass, F: fail, Blank: no run)

The current version is highlighted.
Outline

- Background, Motivation & Situation
- **Test Case Recommendation**
 - Morphological Analysis
 - Test Case Clustering
 - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work
Scenario for
Our Test Case Recommendation

1. For each version, a practitioner decides on a set of test cases to rerun (R_0)

2. We recommend another set of test cases similar to the ones in R_0 in regards to their priorities

set of all test cases

practitioner's selection

10 12 6 11 7

(C) 2017 Hirohisa Aman

TAIC PART 2017 in Tokyo
Outline

- Background, Motivation & Situation
- **Test Case Recommendation**
 - Morphological Analysis
 - Test Case Clustering
 - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work
Morphological Analysis

- A morphological analysis is used to analyze texts written in a natural language.
- It divides text strings into component words and detects their parts of speech (noun, verb, ...)

There are many applications of it like machine translations.
Analysis of Our Test Case

- Our test case is **written in Japanese**
- A test engineer performs his/her test according to the test case

An example of a test case (translated into English)

A project creation:
Enter a name of project, and check if we can successfully create a new project on the system.
The length of project's name should be around 10 characters.

- We used **MeCab** (one of the most popular morphological analysis tool for Japanese), and **extracted a set of words** (nouns, adjectives and verbs)
Similarity between Test Cases

- We compute the similarity between test cases t_i and t_j by using the Jaccard index:

\[
J(t_i, t_j) = \frac{|W_i \cap W_j|}{|W_i \cup W_j|}
\]

- W_i: the set of words in test case t_i
- W_j: the set of words in test case t_j

- This is a simple but useful index; it has been widely used in the natural language processing world.
Example

- Suppose our sets of words are

<table>
<thead>
<tr>
<th>W_1</th>
<th>button, click, chronological, date, display, download, file, log, order</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_2</td>
<td>archive, button, click, chronological, date, download, file, order</td>
</tr>
</tbody>
</table>

$W_1 \cap W_1$
- button, click, chronological, date, download, file, order

$W_1 \cup W_2$
- archive, button, click, chronological, date, download, display, file, log, order

$$J(t_1, t_2) = 0.7$$
Outline

- Background, Motivation & Situation
- **Test Case Recommendation**
 - Morphological Analysis
 - Test Case Clustering
 - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work
Clustering

- **Clustering** is the task of **grouping a set of objects together** (making a cluster)
- Objects belonging to the same group are **more similar** to each other than they are to objects of other groups
Test Case Clustering

- Define the distance between test cases
 \[d(t_i, t_j) = 1 - J(t_i, t_j) \]
 This is referred to as **Jaccard distance**

- Then, perform a clustering
 - We used `hclust` function in **R** (a popular statistical computing environment)
 - The function performs a hierarchical cluster analysis with the complete linkage method
We can obtain the results of clustering by empirically setting 0.3 as the cut level: we consider that two test cases are similar when their Jaccard index ≥ 0.7 (= 1 − 0.3). We will group test cases whose distances are less than the cut level in the same cluster.
Outline

• Background, Motivation & Situation

• Test Case Recommendation
 ◦ Morphological Analysis
 ◦ Test Case Clustering
 ◦ Test Case Prioritization

• Empirical Study

• Related Work

• Conclusion & Future Work
Test Case Prioritization

• After our test case clustering, we select test cases to rerun
• Within a cluster, we prioritize certain test cases

• We have empirically used two criteria:
 I. Gap between the Last run version and the Current version (GLC)
 II. Failure Rate (FR)
Priority of a Test Case: Type-I

Gap between the Last run version and the Current version (GLC)

A greater GLC value means it’s not been tested for more versions. Ignoring such a test case has a higher risk of overlooking regressions.
A higher FR value means a better track record for finding a failure in the past. Such a test case may test a part which is fault-prone and we might expect a higher ability to find a regression.
How should we combine them?

We have to **consistently combine two different criteria** for all test cases.

To implement such an integration, we adopt the notion of the **Mahalanobis-Taguchi Method**.
What is Mahalanobis distance?

- A distance **normalized** by the **dispersion** of data: the distance between \(\mathbf{x} \) and \(\mathbf{a} \)

\[
d_M(\mathbf{x}, \mathbf{a}) = (\mathbf{x} - \mathbf{a})^T S_A^{-1} (\mathbf{x} - \mathbf{a})
\]

where \(S_A \) is the variance-covariance matrix

- cf. **Euclidean distance**

\[
d_E(\mathbf{x}, \mathbf{a}) = (\mathbf{x} - \mathbf{a})^T (\mathbf{x} - \mathbf{a})
\]
An Intuitive Interpretation

- One-dimensional Mahalanobis distance

\[d_M(x, a) = \frac{(x - a)^2}{\sigma^2} \]

It's the Euclidian distance divided by the variance of data

- This notion is generalized to the multi-dimensional form

Their Euclidian distances are the same, but the red one is clearly farther from the center

Mahalanobis distance can capture such a difference
Example: Test Case Evaluation

(P: pass, F: fail, Blank: no run)

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
<th>GLC</th>
<th>FR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td>1</td>
<td>0/1</td>
</tr>
<tr>
<td>T2</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0/1</td>
</tr>
<tr>
<td>T3</td>
<td>F</td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>1/2</td>
</tr>
<tr>
<td>T4</td>
<td>P</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td>2</td>
<td>1/3</td>
</tr>
<tr>
<td>T5</td>
<td>F</td>
<td>F</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2/3</td>
</tr>
</tbody>
</table>

GLC and FR values are given for each test case.

Calculating Mahalanobis distance:

<table>
<thead>
<tr>
<th></th>
<th>GLC</th>
<th>d_{GLC}</th>
<th>FR</th>
<th>d_{FR}</th>
<th>d_{GLC&FR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
<td>0.11</td>
<td>0</td>
<td>0.00</td>
<td>0.12</td>
</tr>
<tr>
<td>T2</td>
<td>8</td>
<td>7.11</td>
<td>0</td>
<td>0.00</td>
<td>7.81</td>
</tr>
<tr>
<td>T3</td>
<td>6</td>
<td>4.00</td>
<td>1/2</td>
<td>4.00</td>
<td>11.42</td>
</tr>
<tr>
<td>T4</td>
<td>2</td>
<td>0.44</td>
<td>1/3</td>
<td>1.78</td>
<td>3.03</td>
</tr>
<tr>
<td>T5</td>
<td>3</td>
<td>1.00</td>
<td>2/3</td>
<td>7.11</td>
<td>10.67</td>
</tr>
</tbody>
</table>

(C) 2017 Hirohisa Aman TAIC PART 2017 in Tokyo
Outline

- Background, Motivation & Situation
- Test Case Recommendation
 - Morphological Analysis
 - Test Case Clustering
 - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work
Empirical Study: Dataset

- We prepared **300 test cases** for an information system: \(t_1, t_2, \cdots, t_{300} \)

- The system to be tested has **13 versions**: \(v_1, v_2, \cdots, v_{13} \)

- All test cases are **written in Japanese** and test engineers manipulate the system according to those test cases
While there were **regressions**, the original test activity **overlooked** them

When the system was upgraded **from** v_6 **to** v_7, there were regressions; if we reran **more test cases at or later than** v_7, we might have prevented the overlooking

We will examine if the proposed method can recommend appropriate test cases
Procedure

1. Perform a morphological analysis on each of the 300 test cases
2. Categorize test cases into clusters
3. Iterate the following for each version v_j:
 a. $R_0 \leftarrow$ test cases selected by practitioners (the original test plan)
 b. $R_1 \leftarrow$ test cases recommended by using R_0 with the clustering results (Step2)
 c. Examine how many test cases in R_1 can detect regressions
Procedure

1. Perform a **morphological analysis** on each of the 300 test cases

2. **Categorize** test cases into clusters
3. Iterate the following for each version v_j:
 a. $R_0 \leftarrow$ test cases selected by practitioners (the original test plan)
 b. $R_1 \leftarrow$ test cases recommended by using R_0 with the clustering results (Step 2)
 c. Examine how many test cases in R_1 can detect regressions
Results: Manual Selections (R_0) vs Recommendations (R_1)

Number of test cases

<table>
<thead>
<tr>
<th>Tested version</th>
<th>R0</th>
<th>R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>v2</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>v4</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>v5</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>v6</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>v7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>v8</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>v9</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>v10</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>v11</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>v12</td>
<td>13</td>
<td>65</td>
</tr>
<tr>
<td>v13</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- **faults (regressions) created**: 6
- **faults detected**: 2
Discussion: Recommendation at v_7
(just after faults were created)

More test cases are recommended than the practitioners’ selections; it is obviously a different feature from other versions.
Ratio of Recommendations to Manual Selections: $|R_1| / |R_0|$

The highest ratio is observed just after the creation of regressions.

Regressions were found by recommended test cases.

Ratio of R_1 to R_0
What does such a high ratio mean?

- For a set of manually selected test cases, a higher ratio shows that there are more test cases which are similar but not selected.

Overlooking regression

- The ratio would be useful in detecting the insufficiency of a test plan.
Effectiveness of Recommendation

- At v_7, the proposed method recommended 15 test cases
- If we had also rerun those recommended test cases, 6 would have succeeded in finding regressions
- On the other hand, if we had selected 15 test cases randomly, the expectation of finding regressions is about 1.1

About 5-6 times more effective than random selection
Effectiveness of Prioritization

- If **many test cases** are recommended, we may need to **prioritize** them because of cost or time for testing
- We can do this by using the **Mahalanobis-Taguch (MT) method**

<table>
<thead>
<tr>
<th>rank</th>
<th>detecting defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rank</th>
<th>detecting defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>No</td>
</tr>
<tr>
<td>13</td>
<td>No</td>
</tr>
<tr>
<td>14</td>
<td>No</td>
</tr>
<tr>
<td>15</td>
<td>No</td>
</tr>
</tbody>
</table>

All defects are **detected** by the test cases with higher priorities

MT method works well
Cut Level when Clustering

- While we set 0.3 as the cut level based on our experience, it has room for discussion.

- We performed additional experiments at ν_7 using other cut levels (0.1—0.9).
Defect Detection Rate vs Cut Level

- detection rate
 \[\text{detection rate} = \frac{\text{number of test cases detecting defects}}{\text{number of recommended test cases}} \]

A model using higher cut level recommends more test cases, but includes more false-positive ones too.

The results would be highly affected by how to describe test cases, so further analysis is our future work.
Threats to Validity (1/2)

- Since our study covers a part of regression testing for a **single product**, we **cannot say** our results are **generalizable**

- However, we believe that this study contributes to **stirring up the utilization of the morphological analysis** in the regression testing world
Threats to Validity (2/2)

- There might be a large variety of vocabulary among test cases because they are written by different engineers, in natural language (Japanese): different engineers might use different words to describe the same thing.

- It would be better to perform data preprocessing to link a word with another word which has the same meaning; a further analysis of vocabulary is our future work.
Outline

- Background, Motivation & Situation
- Test Case Recommendation
 - Morphological Analysis
 - Test Case Clustering
 - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work
Related Work (1/3)

- **Code analysis-based** test case prioritization
 - Jeffrey et al.[3] and Mirarab et al.[4] proposed ways of prioritizing test cases through the *program slicing* analysis or the *code coverage* analysis

- **Test history-based** test case prioritization
 - Kim et al.[5] prioritized test cases by using the notion of the *exponentially smoothed moving average* on the test history
 - Aman et al.[6],[7] formulated a test case prioritization as a *0-1 programming problem*
Related Work (2/3)

- **Clustering-based** test case prioritization
 - Sherrif et al. [8] classified test cases through an analysis of *source code change history*
 - Carlson et al. [9] and Leon et. [10] categorized test cases by using the *code coverage* data or the *execution profiles*
 - Arafeen et al. [11] focused on the *requirement specification* and categorized related test cases
Related Work (3/3)

• **Content-based** test case prioritization

 ◦ Ledru et al. [12] used a *string distance* (character level distance) and selected the **farthest test cases** from the set of already-run test cases

 ◦ Thomas et al. [13] leveraged the **topic modeling method**: they extracted topics from test cases and quantified the membership degrees of each test case to those topics

• While our approach has a similar aspect to [13], we tried to propose **another, easier method** of test case clustering by focusing on words
Outline

- Background, Motivation & Situation
- Test Case Recommendation
 - Morphological Analysis
 - Test Case Clustering
 - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work
Conclusion & Future Work

Conclusion

- A **morphological analysis** method has been applied in **test case recommendation**
- Once a test engineer decides to rerun a test case t_0, the proposed method **recommends other test cases whose contents are similar** to t_0
- An empirical study showed the proposed method is useful in **preventing the overlooking of regressions**

Future Work

- we plan to perform a further analysis on **features of test cases** from the perspective of **natural language analysis**
Answers to the Survey

- **How did you get in contact with the industrial partner?**
 - After a discussion at a workshop, I approached the industrial partner about the collaboration

- **How did you collaborate with the industrial partner?**
 - The industrial partner gave me real data (confidential parts were masked), and I analyzed the data and discussed the results

- **How long have you collaborated with the industrial partner?**
 - 5 years

- **What challenges did you experience when collaborating with the industrial partner?**
 - To prove how our research results would successfully work in the field